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Abstract. Proton energies in hydrogen bonds are mostly calculated using a double Morse
potential (the DMP model). This form, however, does not reproduce the experimentally observed
correlation between the proton stretching frequency and the bond length in an extended bond-
length region sufficiently well. An alternative potential is proposed in the present paper. The
quantum states of this non-symmetric double-well potential are calculated numerically using the
Numerov (Fox–Goodwin) algorithm. It is shown that the optical spectra of hydrogen bonds
in various substances can be well approximated on the basis of the transition frequencies and
intensities predicted by the present model. For weakly interacting OH impurities in LiNbO3, the
overtone spectrum and line intensities are well reproduced, whereas the line broadenings and the
decrease of the fundamental stretching frequencies in intermediate and strong hydrogen bonds
are traced back to the influence of the reduced height of the central barrier. The model is also
extrapolated to the range of symmetric hydrogen bonds, and the calculated transition frequencies
are discussed with respect to most recent infra-red experiments on ice under strong compression.
A possible artificial infra-red signal from strained diamond anvils is thereby noted.

1. Introduction

In the DMP model for the description of O–H· · ·O hydrogen bonds, two identical Morse
functions uM(r) are placed back to back to form a symmetric double-well potential
UDMP (r) = uM(r) + uM(−r − R) [1–10], whereR stands for the space between the two
neighbouring oxygen atoms, i.e. the bond length. Depending on the chemical environment,
bond lengths exhibit values in a rangeR ≈ 242–300 pm [11], and a strong correlation
betweenR and the proton stretching frequencyν(R) has been observed [11]. For a specific
substance,R can be changed by the application of external pressure [2, 8–10], and theν(R)

dependence was used as a ‘fingerprint’ for the existence of H bonds [12].
It was noted that the OH distancerOH is also correlated to the bond lengthR [11,

13], and that this correlation can be described in the DMP model using a common set of
parameters [2, 7]. This presupposition of a universal DMP was often adopted to describe
the properties of hydrogen bonds in various materials [9, 10], and to predict the behaviour
of H bonds with the variation ofR, e.g., in H2O ice under hydrostatic pressure [8], using
the parameters of reference [2]. In this particular case, a high-pressure phase (‘ice X’) was
predicted, where the protons occupy the mid-point between the two oxygen atoms, forming
a symmetric H bond [2, 8, 14]. The assumption of a universal DMP has also conversely
been used to argue that OH impurities do not form hydrogen bonds in LiNbO3, because the
experimentally observed overtone spectrum is at variance with the DMP model, and thus a
single-oscillator model has been proposed for this system [15].
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On the other hand, the concept of a universal DMP appears to be questionable. From a
neutron diffraction study on highly compressed ice, it was concluded [16] that the variation
of the OH distance withR is much smaller than predicted by the DMP model of reference
[2], and DMPs have been used in connection with rather different sets of parameters to model
the properties of H bonds in different materials [3–6]. Furthermore, IR measurements on
the proton stretching frequency in OH:LiNbO3 under pressure showed a frequency shift
with a negative mode-Grüneisen parameter [17], following theν(R) correlation of weak H
bonds [11, 18–22], which can only be described by means of a single-oscillator model [15]
at the expense ofR-dependent model parameters.

For H2O ice the proton stretching frequency is expected to exhibit a minimum at the
transition to the proposed phase ice X [8, 23, 24], indicating the symmetrization of the
H bonds. However, various spectroscopic investigations on highly compressed ice gave
no clear evidence for this symmetrization. In Raman measurements, the frequency of the
proton stretching modes firstly decreased according to theν(R) correlation, but in the
range in which the transition to ice X was expected, the lines were no longer detectable
[25]. The disappearance of the lines was explained on the assumption that in the proposed
crystal structure of ice X, the proton stretching modes are not Raman active. However,
in complementary IR spectroscopic investigations up to 110 GPa, the IR absorption lines
also disappeared in the pressure range in question [24, 26]. Because of this somewhat
controversial situation, the problem of proton potentials in hydrogen bonds is reinvestigated
in the present paper.

Figure 1. The symmetric double Morse potential with the parameters of reference [15], and the
proton wave functions, calculated with the Numerov algorithm (see the appendix). The baselines
of the wave functions have been shifted to represent the energy levels. The short lines on the
right-hand frame represent the energy levels in OH:LiNbO3, according to the measurements of
reference [15]. The states are described by symmetric and anti-symmetric wave functions and
are doubly degenerate below the barrier top.

In section 2, the theoretical approach will be outlined, with a special emphasis on
the differences between symmetric and non-symmetric potentials. This discussion is of
particular importance, because the existence of double-well potentials is often questioned
by arguments concerning the localization of protons. It will be shown that non-symmetric
double-well potentials are not in contradiction to localized proton states, and that the



Vibrational states in hydrogen bonds 2243

phenomenon of coherent tunnelling and delocalized proton states must be seen in connection
with the exceptional case of a symmetric potential.

Section 3 will present examples of the present model for different bond lengths,
and these results will be discussed in relation to corresponding experimental results on
various substances. It will be demonstrated that the present model reproduces the observed
frequency–bond-length correlation, and, furthermore, the observed line broadenings in
intermediate and strong hydrogen bonds will be related to lifetime broadenings of the ground
and first excited states, caused by incoherent tunnelling.

At present, there is considerable activity whose objective is observing the proton
stretching frequency of symmetric bonds in ice. Several IR experiments have been
performed on this substance at pressures around 100 GPa and above. However, the results
of these experiments do not seem to give clear evidence for the expected proton mode in
symmetric bonds. The predictions of the present model for the transitions in symmetric
bonds will be discussed in connection with these most recent results.

In an appendix, the more technical details of the present calculations will be given and
the mathematical advantages of the proposed potential, making it also suitable for other
applications, will be discussed.

2. Theory

The time-independent one-dimensional Schrödinger equation[
− h̄

2

2µ

d2

dr2
+ U(r)

]
9(r) = E9(r) (1)

can only be solved analytically in some rare cases, e.g., for the single Morse potential.
Thus, the wave functions and eigenstates are often calculated using the semi-classical WKB
method [3–6], or a variational approach [8–10]. The WKB approximation, however, is
accompanied by conceptual and computational problems, and, because of its semi-classical
character, it is not clear in special cases to what extent the results are reliable. Variational
approaches, on the other hand, are generally useful for the calculation of the ground-state
wave functions only. In this work, equation (1) has been solved numerically (see the
appendix).

A hydrogen bond in a solid may be symbolized by X1–O–H· · ·O–X2, where X1 and X2

stand for the interactions with the rest of the crystal, ‘seen’ by the left-hand and right-hand
oxygens, respectively. If X1 = X2, the proton potential must be a symmetric double-
minimum potential, irrespective of the oxygen–oxygen distance, because the positions near
the oxygens cannot be distinguished. In the case X1 6= X2, the proton potential is non-
symmetric.

In the traditional DMP model, the proton potential in weak hydrogen bonds originates
primarily from the OH bond, described by a Morse function. The influence of the second
oxygen is taken into account by the same function, resulting in a double-minimum potential.
In most previous treatments using the DMP model, symmetric DMPs were considered,
thus implicitly assuming the case X1 = X2. Figure 1 represents the wave functions and
energy levels in such a symmetric DMP. The energy levels far below the barrier top are
doubly degenerate with totally symmetric and anti-symmetric wave functions relative to
the bond centre. The proton states are therefore delocalized with equal probability in both
wells, which corresponds to coherent tunnelling of the protons. Near the barrier top, the
degeneracy is destroyed by tunnel splitting.
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Coherent tunnelling is an interesting quantum effect, and there is at present considerable
activity in searching for examples of tunnel splitting in solids. However, as a rule, proton
states in solids are localized, and, up to now, there seems to have been only one exception
from this rule, where coherent tunnelling has been identified in a solid [27]. There are
different reasons for the localization of protons [28]. On the one hand, static interactions
with X1 6= X2 are generally accompanied by an energy bias in the proton potential, which,
as discussed below, leads to proton localization. On the other hand, due to X1 and X2, the
two oxygen atoms can also be coupled to lattice vibrations, by which the proton potential
is modulated. These dynamic distortions of the potential are generally not in phase with a
possible coherent tunnelling motion, and coherence is destroyed even in the case X1 = X2,
when the hydrogen bond is coupled to a phonon bath, and the proton states localize. Thus,
the traditional DMP model applies only to an exceptional case, whereas for a more general
description of hydrogen bonds, non-symmetric potentials have to be considered.

Figure 2. Proton states in a non-symmetric DMPUDMP (r) = cuM(r) + c−1uM(−r − R),
with c = 1.04 and the same potential parameters as in figure 1. The states below the barrier top
are localized and the degeneracy is lifted due to the energy bias.

Figure 2 represents a non-symmetric DMP and its quantum states. The deep-level
states are considerably different from the corresponding states in the symmetric potential:
the degeneracy is destroyed due to the energy bias, and, furthermore, the states are well
localized. Near the barrier top, where tunnel splitting occurs in a symmetric potential, the
wave functions assume finite values in the adjacent wells, and, therefore, the probability
of surviving in the initial well is reduced due to incoherent tunnelling. The wave
functions above the barrier top are not much affected by the energy bias and resemble
the corresponding wave functions of the symmetric case.

The symmetric potential, represented in figure 1, was used to argue that OH− impurities
in LiNbO3 do not form hydrogen bonds, because, from experimental evidence, localized
proton states must be assumed in this system, and, furthermore, the observed transition
frequencies are at variance with the energy levels and tunnel splittings of this traditional
DMP [15]. Referring to hydrogen bonds in general, however, this argument is not
completely conclusive, because at least the prediction of delocalized states in the DMP
model could be amended by the introduction of an energy bias according to figure 2, and
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there is growing experimental evidence that the idea of a universal DMP model, though
frequently adopted, is not a completely satisfactory description of hydrogen bonds.

Table 1. Different sets of parameters of double Morse potentials, describing hydrogen bonds in
different materials, and the extrapolated free-stretching frequencies. The parameters of reference
[2] are also used in, e.g., references [8] and [9]. The parameters of reference [15] have been
used for the calculations of figure 1.

uM0 a ν∞
Reference (eV) (nm−1) (cm−1)

[2] 5.34 28 4638
[3] 1.18 49.5 3210
[5] 1.44 45.3 3397
[6] 2.94 46.8 5315
[15] 2.36 40 4098

If one compares the DMP parameters which have been used in the literature (table 1), it
can be noticed that these parameters differ considerably. Furthermore, if the presupposition
of a universal DMP was correct, this potential should give, at least approximately, the
frequency of the free proton stretching modeν∞ in the limit R → ∞, observed, e.g.,
in gaseous CH3COOH at 3583 cm−1 [11], or in isolated HDO molecules at 3707 cm−1

[29]. None of the frequencies predicted from the different sets of parameters (table 1) is
in reasonable agreement with these experimental frequencies. In fact, it must be concluded
that a DMP in connection with a certain set of parameters is only valid for a limited range
of the bond lengthR, and may be useful for the comparison of proton and deuteron states
in a specific material [3–6].

The Morse function, describing a single-well potential, may be written in the form

uM(r) = uM0 {exp[−2a(r − r0)] − 2 exp[−a(r − r0)]} . (2)

In this function,a is a strength parameter anduM0 stands for the depth of the potential.
In connection with hydrogen bonds, the equilibrium distance in OH− ions r0 = 96 pm is
generally adopted. The energy levels in the potentials of figure 1 or figure 2 are inconsistent
with the observed transition frequencies, because the barriers are too low. In particular,
the third excited state is in the vicinity of the barrier top, and shows a tunnel splitting
of 314 cm−1, which was not observed. Mathematically speaking, the low barrier of a
DMP is caused by the long-range attractive part of the functionuM(r), characterized by the
parametera, which is one half of the repulsive parameterb = 2a. Therefore, one may think
of a different formu(r), which has an attractive part of shorter range, and an additional
parameter is needed to decouple the repulsive and attractive parts of the potential. The
obvious generalization of the Morse potential (equation (2)) along these lines is

u(r) = u0

{
a

b − a exp[−b(r − r0)] − b

b − a exp[−a(r − r0)]
}
. (3)

In this form, however, the attractive parametera is not totally decoupled from the repulsive
parameterb, because the relationb > a must be fulfilled. In the case whereb < a, the two
terms just exchange their meanings, the attractive part becoming the repulsive part, and vice
versa. Another shortcoming of this form is the fact that the casea = b must be excluded.

In this work, a generalization of the Morse potential is assumed, which is not obvious
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at first sight:

u(r) = u0
a {exp[−b(r − r0)] − 1} + b {exp[a(r − r0)] − 1}

a + b exp[a(r − r0)] − u0. (4)

This form was obtained by the combination of independent repulsive and attractive parts,
and a step function, which switches between these parts atr = r0, the position of the
minimum. The parametersa andb control the shape of the potential forr > r0 andr < r0,
respectively. It can be easily shown that forb = 2a equation (4) is equal to the Morse
function (equation (2)).

The proton potential of an OH− ion in a crystal is determined, in a first approximation,
by the intra-ionic bond to the oxygen. In many cases, other interactions make only a minor
contribution, which can be concluded from ‘typical’ stretching frequencies in the range
∼3500–3700 cm−1. Additional neighbouring oxygen atoms are of particular importance,
because of the possible building of hydrogen bridges. Depending on its distance to the OH−

ion, an oxygen atom has an increasing influence with decreasing separation, which becomes
apparent in the experimentally observed frequency–bond-length correlation [11]. For large
distances, the influence of a neighbouring oxygen is accordingly weak and competes with
other solid-state phenomena like, e.g., dielectric properties or proton–proton interaction.
Whether or not an H bridge is built in these cases can experimentally be decided only by
the determination of the proton position (e.g., by neutron diffraction). OH:LiNbO3 certainly
represents one of these borderline cases, for which the question concerning hydrogen
bonding is a subject of controversy in the literature.

Table 2. Experimental transition frequenciesνexp in proton-exchanged (p) and deuteron-
exchanged (d) LiNbO3 and the respective linewidths1ν [15]. The theoretical valuesνcalc have
been calculated using the following two parameter sets. Set I:u0 = 3.015 eV,a = 105 nm−1,
b = 15.2 nm−1, R = 308 pm. Set II:u0 = 3.350 eV, a = 71.0 nm−1, b = 20.0 nm−1,
R = 288 pm. For the proton and deuteron reduced masses the valuesµp = 0.9412mp and
µd = 1.7778mp have been assumed. In the last column, the calculated tunnel splittings1 of
the excited states (set II) are listed. For set I, the tunnel splittings are fractions of a wavenumber
in every case. The ‘free’-stretching frequency for set II isν∞ = 3577 cm−1.

νcalc
1ν (cm−1)

νexp (cm−1) 1

(cm−1) (FWHM) Set I Set II (cm−1)

0→ 1 (d) 2588(2) 21 2592 2582 0.000
0→ 1 (p) 3508(2) 30 3507 3505 0.015
0→ 2 (d) 5084(4) 46 5081 5080 0.001
0→ 2 (p) 6836(4) 67 6830 6843 0.52
0→ 3 (d) 7487(8) 65 7476 7485 0.028
0→ 4 (d) 9783(12) 85 9783 9783 0.65
0→ 3 (p) 9989(8) 127 9986 9978 11
0→ 4 (p) 12 965(16) 170 12 975 12 827 150

In the present paper the following approximations have been adopted.

(i) The proton–oxygen interaction due to the covalent bond within the OH− ion is
described by an energy functionu(r) with a single minimum atr0 = 96 pm.

(ii) The interaction with a second oxygen atom is taken into account by the same function
u(−r − R).
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Figure 3. Wave functions of proton states in the left-
hand well of the present model potential for a bond
lengthR = 308 pm, using parameter set I. The baselines
of the wave functions correspond to the energies given
in table 2.

Figure 4. Wave functions of proton states in the double-
well potential of the present model for a bond length
R = 288 pm, using parameter set II. The baselines of
the wave functions correspond to the energies given in
table 2.

These two assumptions (i) and (ii) are analogous to the DMP model, except that the
Morse function (2) is replaced by equation (4).

(iii) In contrast to the DMP model, the most frequent case X1 6= X2 is taken into
account by an asymmetry factorU(r) = cu(r) + c−1u(−r − R). Generally, there is only
little information about an energy bias available. Therefore, the asymmetry factor is fixed
at a value ofc = 1.001 here, which is sufficient for the localization of the states, but hardly
noticeable, e.g., in figure 3.

For the determination of the proton potential, a case is favourable where (a) the
environmental influence on the OH− ion is weak, and (b) as many as possible of the
transition frequencies have been determined. For a parameter set I, the model potential has
been applied to the OH:LiNbO3 system, because it fulfils the above-mentioned requirements,
and the negative mode-Grüneisen parameter has not been understood yet. For the bond
length, a value ofR = 308 pm was assumed, and the parametersa, b andu0 were fitted
to the observed frequencies. For the reduced masses, the valuesµp = 0.9412mp and
µd = 1.7778mp have been used [30]. Table 2 presents the comparison of the experimental
and theoretical frequencies for both proton and deuteron stretching frequencies. It can
be noticed that the experimental frequencies are reproduced within experimental accuracy.
Figure 3 shows a representation of this model potential I and the respective proton states
of the left-hand well, which are well localized. This potential shows that the experimental
evidence concerning localized proton states and energy levels in OH:LiNbO3 is not in
contradiction to the possible existence of a double-well potential.

For hydrogen bonds in other substances, however, this model potential I does not
sufficiently reproduce theν(R) correlation. For a second parameter set II, a value of
R = 288 pm was assumed, and the parameters were fitted with the additional requirement
of reproducing the proton stretching frequencies at aroundR = 250 pm [11], maintaining
as much of the overtone spectrum as possible. The predicted frequencies of this model II
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are also given in table 2, together with the calculated tunnel splittings of the excited levels.
The potential and the quantum states are represented in figure 4. It can be observed that
the transition frequencies are still well reproduced, except the third proton overtone.

In section 3, the quantum states of this model potential II will be presented for different
values of the bond lengthR. The predictions of this model for the fundamental transition
frequency, as well as line intensities and linewidths, will be discussed in comparison to the
results of optical experiments on real systems with corresponding bond lengths.

Figure 5. Wave functions of proton states in the double-well potential of the present model
(parameter set II) for a bond lengthR = 272 pm.

3. Examples

In MgSO4·6H2O a bond length ofR = 272 pm is observed, and the observed frequency
is 3320 cm−1 [11]. The hydrogen bonds in H3BO3 have the same bond length, but
the frequency of 3200 cm−1 is somewhat lower [11]. For the uncoupled OH modes in
amorphous D2O under pressure, a value of 3200 cm−1 was obtained for a bond length
of about 270 pm [31]. ForR = 272 pm, the model predicts a transition frequency of
3348 cm−1 (figure 5).

Figure 6 illustrates the situation when the first excited states are energetically in the
vicinity of the barrier top. Here, their wave functions assume finite values in the opposite
wells, because the tunnel splitting becomes comparable to the energy bias. There is a
certain probability that the protons escape from the initial well during an excitation process,
and, therefore, lifetime broadening must be attributed to these excited levels. The spectra
of CH3COOH crystals at 90 K, in which the H bonds have a length of 262.5 pm, do
indeed show a rather broad peak at 2875 cm−1 [11]. The calculated transition frequency is
somewhat higher. In compressed ice, a bond length of 264 pm corresponds to a pressure
of about 26 GPa. Raman and IR measurements showed a substantial line broadening in
this range, and the lines of the proton stretching modes were no longer detectable at higher
pressures [24–26].

For a bond length ofR = 256 pm (figure 7), state 1 is very close to the barrier top,
while 1′ lies considerably higher. The four possible transitions between the two ground
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Figure 6. Squares of the wave functions of the ground and first excited states for a bond length
of R = 264 pm (set II). In this bond-length regime, the states 1 and 1′ have finite probabilities
in the adjacent wells, and lifetime broadening has therefore to be expected for the corresponding
transitions. The 01 transition frequency is 3103 cm−1.

Figure 7. Squares of the wave functions of the four
lowest states for a bond length ofR = 256 pm. The
potential parameters are the same as in the preceding
figures. The situation is quite close to that of the
hydrogen bonds in NaHCO3 or (CH3)2AsOOH (see the
text).

Figure 8. The four lowest states for a bond length of
R = 250 pm. The potential parameters are the same
as in the preceding figures. A similar potential has
been obtained using the DMP model with parameters
specially adapted to describe the transition frequencies
in CrOOH and CoOOH [5] (see table 3).

states and the two excited states have frequencies of 2245 cm−1, 2322 cm−1, 2979 cm−1

and 3056 cm−1. Raman spectra of NaHCO3 (bond length 259 pm) show a complex band
with four lines at 2430 cm−1, 2530 cm−1, 2910 cm−1 and 3050 cm−1 [11]. There is, of
course, no exact agreement between the transition frequencies of the present model and the
observed frequencies in NaHCO3; however, the prediction of two doublets in this bond-
length regime is in excellent qualitative agreement with the experimental results. Similar
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arguments apply to the interpretation of the Raman spectra of(CH3)2AsOOH (bond length
257 pm). The spectra are again dominated by two doublets, shifted to lower wavenumbers
and with considerably larger linewidths [11].

In this bond-length regime, the two ground states 0 and 0′ assume finite values in
the opposite wells, because the energy of the tunnel splitting becomes comparable to the
energy bias. The model potential now achieves the characteristics of a two-level system
(TLS). The TLS model is used to describe the properties of amorphous substances [32], and
has also been applied to the problem of proton transfer at low temperatures [28]. Due to
the low barrier, the occurrence of disorder must be expected in real systems, even at low
temperatures. From Raman spectra of the lattice modes in H2O ice it was concluded that
this substance transforms from the ordered polytype ice VIII to the disordered form ice VII
at about 60 GPa(R ≈ 247 pm) in the vicinity of the absolute zero of temperature [33], and
not to the proposed symmetric ice X.

Table 3. Transition frequencies in chromous and cobaltic acid [5] (a: experimental; b: theor-
etical), and the frequencies of the present model II forR = 250 pm (c). The intensity ratios
obtained according to equation (A4), using the wave functions illustrated in figure 8, are also
given.

νij
(cm−1)

CrOOH CoOOH

a b a b c Iij /I01

0→ 0′ 518 214 221 202 436 59
0′ → 1 1650 1621 1800 1667 1655 131
0→ 1 2091 1
0→ 1′ 3400 3264 3450 3338 3581 15

Figure 8 illustrates the model potential and the squares of the wave functions of the four
lowest energy levels forR = 250 pm. The splitting of the ground states is considerably
increased, which means that the fundamental transition, i.e. the proton stretching mode,
changes its character in this regime. The model predicts the highest intensity (see the
appendix) for the 0′1 transition, while the intensity for the 01 transition, which is the
fundamental transition in weak H bonds, is negligible (table 3). In chromous acid CrOOH
(bond length 249 pm) and cobaltic acid CoOOH (bond length 250 pm), the H bonds are quite
close to the situation in figure 8 [5]. These substances have been the subject of a theoretical
investigation using a DMP in the WKB approximation [3, 5]. From their calculations
the authors propose an assignment for the observed IR frequencies, which is given in
table 3, together with their best values and the results of the present model. Although the
parameters of the present model have not been specially adapted, the agreement between
the experimental and model frequencies is quite close.

At this point it is interesting to have a brief look at the predictions of the present model
when the proton reduced mass is replaced by the deuteron reduced massµd = 1.7778mp
[30]. In CrOOD and CoOOD the bond lengths depend quite strongly on deuteration, and the
OO distance is increased to about 256 pm. In reference [5] it has been pointed out that the
doublet observed in the IR spectra of these substances (1620 and 1940 cm−1, approximately)
can be well represented by replacing just the different bond lengths and the masses. In the
present model the 01 (1944 cm−1) and 0′1′ (2092 cm−1) transition frequencies are somewhat
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Figure 9. Deuteron states for a bond length ofR = 256 pm. The potential parameters are
the same as in the preceding figures (see also figure 7), but the proton reduced mass has been
replaced by the deuteron reduced massµd = 1.7778mp . The situation corresponds to the
hydrogen bonds in CrOOD and CoOOD [5].

Figure 10. The present model potential becomes symmetric at about 242 pm. The transition
frequency is 1552 cm−1.

larger, but a similar doublet is predicted. Figure 9 shows a representation of the potential
and the squares of the wave functions.

The present potential becomes symmetric at about 242 pm (figure 10). It can be noted
that the second derivative, i.e. the force constant of the classical motion, vanishes at the
centre of the bond, while the frequency of the transition between the two quantum states is
1552 cm−1. The potential is rather anharmonic, and a strong coupling to the normal modes
of the environment can therefore be expected in real systems. Furthermore, the maximum
of the ground-state wave function is much more extended than in the non-symmetric case
(see, e.g., figure 6), which means that the proton position is not very well defined.
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Figure 11. Energy differences between the energy levels and the bottom of the respective wells.
Some selected transition frequencies are also given. In the TLS (two-level system) regime, the
barrier is of the order of the ground-state energies. Here the ground states split, giving rise to
the new fundamental transition 00′ of symmetric H bonds.

Figure 12. Proton-transition frequencies for different values of the bond lengthR of the present
model and the data of reference [11] (circles).

The results of the present calculations for the energy levels and the transition frequencies
are summarized in the following figures and compared to the experimental frequency–bond-
length correlation. Figure 11 shows the evolution of the energy levels relative to the bottom
of the respective well. For weak H bonds(R > 270 pm), the energy levels in the two
wells are almost degenerate, and the 01 and 0′1′ transition frequencies slowly decrease with
decreasing bond length. For intermediate H bonds(260 pm< R < 270 pm), the degeneracy
of the 1 and 1′ states is removed in the vicinity of the barrier top (see also figure 6), and the 01
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frequency decreases more strongly, which causes a knee-shaped curvature in the frequency–
bond-length correlation (figure 12). The transition 01, which corresponds to the fundamental
proton stretching frequency of weak H bonds, actually exhibits a minimum somewhere
aroundR = 250 pm, as has been assumed to be the indication for the symmetrization of
the bond; this minimum, however, is in the TLS regime, where the ground state has already
split into 0 and 0′, and therefore 00′ has become the fundamental transition, while 01 is the
first overtone.

Figure 13. Calculated transition lines (equation (A3)) for different values of the bond lengthR.
The pressure scale corresponds to the equation of state of ice [34]. The shaded area represents
the TLS regime, in which sharp optical transitions are not to be expected. The curves in the
upper third of the figure represent lines in symmetric bridges (see figure 10) with a linearly
decreasing linewidth.

By means of equation (A3) of the appendix, optical transition lines can be simulated.
In the range of weak H bonds, the intensities increase with decreasingR mainly due to the
reduction of the volume, and the transition-matrix element plays only a minor role, being
almost constant, as long as there is no great degree of tunnelling of the states (figure 13). The
transition lines of the proton modes become considerably broader below aboutR = 270 pm.
At aboutR = 264 pm, which corresponds top ≈ 27 GPa in compressed ice, the width
of the lines is so large that the lines would be hardly observable in an optical experiment,
using the diamond-anvil technique. This limiting pressure is in very good agreement with
the line broadenings and the ultimate disappearance of the lines observed in ice [24–26].
For deuteron modes, the respective broadenings take place at considerably shorter bond
lengths (or higher pressures), which again is in excellent agreement with the experimental
findings [25].

In the upper third of figure 13, calculated lines for the 00′ transitions in symmetric
bonds are shown. Here the linewidths can be assumed to be caused by a strong anharmonic
coupling to environmental modes, which is reduced as the potential becomes more and
more harmonic. Therefore, the linewidths have been assumed to decrease linearly with
decreasing bond length in these calculations (linewidths cannot be defined analogously to
equation (A2) for transitions in single-minimum potentials). The matrix element is larger
by a factor of two than for the transitions in the double-well regime, and the intensity of
the lines is furthermore increased, because of volume reduction. Thus, the predicted lines
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are quite strong, which is in good agreement with IR spectra for NaH(CH3COO)2 crystals,
with a bond length of 244 pm [11].

4. Discussion

Because of its approximate character according to (i)–(iii) of section 2, model II can
be regarded as an approach to the case of dilute hydrogen bonds in solids, with weak
interactions to their environment. In real systems, such interactions may cause differences
in the proton stretching frequency within a range of about 100–200 cm−1 [11]. However, in
comparison to the traditional DMP model, the description of optical transitions in hydrogen
bonds is considerably improved by the present model, which has been demonstrated in
the foregoing section. On the one hand, this improvement is related to the asymmetry
of the potential, which makes it possible to account for the fact that proton states in
weak hydrogen bonds are localized. Conceptual difficulties in connection with theoretically
predicted delocalized states in symmetric potentials are thereby avoided, and the observed
line broadenings in intermediate and strong hydrogen bonds can be linked to lifetime
broadening. On the other hand, this improvement must be seen in connection with the
use of equation (4). This form makes it possible to construct double-well potentials at
aroundR = 300 pm with only weak anharmonicity over several excited states, and to
represent also the frequency–bond-length correlation in intermediate and strong hydrogen
bonds without a change of parameters.

For weak hydrogen bonds, the interaction of the proton with its second-nearest-neighbour
oxygen atom is much smaller in the present approach than in the traditional DMP model.
The fact that the influence of the second oxygen in weak hydrogen bonds is overestimated
in the DMP model finds more direct support in the results of a neutron diffraction study
on compressed ice, which revealed a much weaker pressure dependence of the OH− bond
length, drOH/dp = 0.04(4) pm GPa−1 [16], than previously estimated on the basis of the
DMP model, drOH/dp = 0.2 pm GPa−1 [2, 35]. For the present model II, the variation
of rOH with the bond lengthR at aroundR = 300 pm is in excellent agreement with
these experimental findings, because it predicts a value of drOH/dR = −0.016. Using the
equation of state of ice [34], this value corresponds to drOH/dp = 0.04 pm GPa−1, which
obviously corresponds to the value of reference [16] within the experimental accuracy.

In conclusion, the present model potential is experimentally indistinguishable from a
single-minimum potential for weak hydrogen bonds, and the influence of the second-oxygen-
neighbour atom is rather weak, competing with other solid-state interactions, which are
neglected in the present approach. With regard to the OH:LiNbO3 system, whose overtone
spectrum has been used here for the determination of the potential, this means that there
is no experimental evidence as to whether or not hydrogen bonds are built in ambient
conditions, although the observed negative mode-Grüneisen parameter [17] points in this
direction. However, the differences between the two parameter sets I and II may also be
interpreted in such a way that the model II is not optimal for this system. These questions
will be discussed more thoroughly in a forthcoming paper [36].

The phenomenological classification of hydrogen bonds [11] finds support in the present
calculations. In weak hydrogen bonds, the ground and first excited states are well localized
and sharp transition lines can be expected. In intermediate bonds, the first excited state
is near the barrier top and is affected by lifetime broadening. The frequency–bond-length
correlation adopts a steeper decrease in this range at the same time. Strong hydrogen bonds
have only a low barrier or are symmetric.

The DMP model was used to predict symmetrization of hydrogen bridges in ice under
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strong compression [2, 8, 14]. However, the use of the DMP model is questionable because
of its shortcomings, discussed in the foregoing sections. Using the present model, the results
for the transition frequencies are represented in the upper third of figure 13. At present,
there is considerable activity in IR experiments on ice, because the MIR range has become
accessible to high-pressure experiments at pressures above 100 GPa only recently [24, 26,
37, 38]. But, at first sight, the results of these most recent experiments do not reveal clear
evidence for a proton stretching mode of symmetric bonds, according to figure 13.

IR measurements on ice films in Xe as the pressure-transmitting medium up to 85 GPa
show first of all an enormous broadening of the fundamental ice stretching peak at low
pressures, completely analogous to the observations in Raman experiments [25]. At the
ultimate pressures of these experiments on H2O:Xe, no evidence for absorption due to a
proton stretching mode in ice can be observed. The only spectral feature which is present
in these spectra has been assigned by the authors to a librational mode in ice (or distortional
modeνD in reference [26]). The authors note an asymmetric peak shape and explain this
shape as a Fano resonance of the respective mode with a stretching continuum.

Spectra of H2O:KBr samples (ice films with KBr as the pressure medium) are somewhat
different from the H2O:Xe spectra: the asymmetry of theνD-peak is smaller, but its intensity
is considerably increased at higher pressures [26]. Furthermore, a new (symmetric) peak
appears at low wavenumbers and is completely resolved at a pressure of 112 GPa. This
new peak was assigned to a translational modeνT of ice [26].

Figure 14. Results of recent IR experiments at very strong compression and the frequency of
the 00′ transition of the present model (continuous line).νD has been assigned by the authors
to a distortional mode in H2O:Xe and H2O:KBr [24, 26], andνT to a translational mode in
H2O:KBr [26]. Triangles represent absorption peaks, which have been assigned to a new lattice
mode in H2 [43]. Circles stand for intersections between bands in reflection spectra of H2O [37].
The dashed line represents the pressure shift of the optical phonon in strained diamond anvils
from Raman measurements [39]. The chain line denotes the extrapolation of the TO-phonon
frequency of KBr, according to its mode-Grüneisen parameter and the equation of state of KBr
[41, 42].

Figure 14 presents the calculated pressure dependence of the 00′ transition and the
observed peak positions of references [24, 26]. It can be observed that the experimental
frequencies show a much weaker pressure dependence than one would expect for ice modes,
according to the present calculations. Instead,νD shows a spectral position and pressure
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shift which are almost identical to the behaviour of the optical phonon in strained diamond
anvils, according to the Raman measurements of reference [39]. The tips of diamond anvils
are strongly strained in a high-pressure experiment, giving rise to distorted Raman spectra
of the optical phonon [40]. One may thus speculate that the selection rules are broken in
strained diamond anvils, giving rise to IR activity of the optical phonon. In particular, this
would explain the increasing intensity of theνD-peak with increasing load.

In reference [26], KBr has been used as the pressure medium, which actually means
that most of the sample chamber was filled with this material. The optical phonon in
KBr is IR active, but IR spectra of KBr have not been taken in this pressure range.
However, from the position of the optical phonon of KBr in ambient conditions and its
mode-Gr̈uneisen parameter [41], using the equation of state of KBr [42] and accounting for
the phase transition of this material at 2 GPa, one may estimate the position of the optical
phonon of KBr in the pressure range in question (figure 14). It can be noted that this
extrapolated frequency coincides almost exactly with the position and shift of theνT -peak
of reference [26]. It is therefore not completely unlikely that theνT -peak is attributable to
KBr, and not to ice.

Most recently, reflection measurements on ice up to 210 GPa have been reported [37,
38]. The original spectra at 69.7 GPa and 80.0 GPa of reference [37] seem to show two
broad reflection bands below 2500 cm−1, and have been accordingly assigned. However,
the intersection of these bands occurs at around 1300 cm−1, again in the range of the
diamond phonon (figure 14). In view of the aforementioned possibility of optical activity
in the diamonds, one might interpret these spectra as a single reflection band, obscured by
absorption in the diamond anvils.

Regarding this unclear situation about the assignment of spectral features in experiments
using the diamond-anvil technique, an independent experiment for the same pressure range
would be useful, and such an experiment has actually been performed in reference [43].
The authors present IR absorption measurement on hydrogen up to 191 GPa, and find a
peak in a spectral range where no modes in hydrogen have been reported before. Therefore,
this peak has been assigned to a ‘new’ lattice mode of hydrogen [43]. Figure 14 shows also
the respective peak positions of reference [43], and it can be noted that the frequency and
pressure dependence coincides almost exactly with the behaviour of the diamond phonon.
Furthermore, the intensity of this new peak increases with increasing pressure, thus showing
the same characteristics as theνD-peak of reference [24] and [26].

At ambient conditions, absorption in diamond anvils due to two- and three-phonon
processes between 1800 cm−1 and 4000 cm−1 is well known [44], but IR measurements
in this frequency range at pressures of 100 GPa and above are relatively new. The meas-
urements of references [24, 26, 37, 43] with rather different contents of the diamond-
anvil cells have a spectral feature in common, which (1) has the frequency of one-phonon
processes in diamond, (2) shows the same pressure dependence and (3) increases in intensity
with increasing load. A possible artificial signal from the diamond anvils must therefore be
taken into consideration.

Disregarding the possible absorption in the diamonds, there is a good chance that a signal
from transitions in symmetric bonds in ice has been observed in the reflection measurements
of reference [37]. The spectra at 69.7 GPa and 80.0 GPa show a broad band in the low-
frequency range, reaching up to about 2500 cm−1. This is the pressure range where the
calculatedν00′ -transition crosses the diamond line in figure 14, and spectra of this type (but
without a dip at 1300 cm−1) are what one would actually expect in reflection measurements.
Unfortunately, no original spectra at higher pressures are given in reference [37], although
the experiments were performed up to 210 GPa.
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However, it may be possible that the predicted frequency shift of theν00′ -transition in
figure 14 will not be observable above 100 GPa, because such pressures correspond to bond
lengths considerably shorter than 240 pm, and such short hydrogen bonds have not been
observed in substances in ambient conditions. A simple one-dimensional model may not
be appropriate for such short oxygen distances, and one may have to take into account a
multi-dimensional energy surface with a saddle point at the bond centre and an average
proton position away from this centre.

In future IR experiments, using the diamond-anvil technique at pressures around 100 GPa
and above, the possible IR activity of the diamond anvils around 1300 cm−1 has to be
clarified and eventually excluded from the interpretation of the spectra. For experiments
on ice in this pressure range, figures 13 and 14 may serve as a guide, where transitions in
symmetric bonds have to be expected.
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Appendix

By means of the Numerov (Fox–Goodwin) algorithm, the second-order differential equation
(1) is solved by a two-step recursion [45]:

9i+2 = 29i+1−9i − (δ2/12)(10Fi+19i+1+ Fi9i)
1+ (δ2/12)Fi+1

+O(δ6) (A1)

with the step widthδ, and9i ≡ 9(iδ), Fi ≡ F(iδ), and

F(r) = 2µ

h̄2 [E − U(r)].
In all the calculations, presented in the foregoing sections, a step width ofδ = 1 pm
was used. For the start of the recursion (equation (A1)), two values of the wave function
at r = 0 and r = δ are required. The determination of these start values depends on
the respective problem, to which the algorithm is to be applied. In case of a symmetric
potentialU(−r) = U(r), the wave functions are alternately symmetric and anti-symmetric,
9(−r) = ±9(r), with increasing energy. For anti-symmetric functions, one has9(0) = 0.
For 9(δ) an arbitrary value9(δ) 6= 0 can be used, which may be determined by a
normalization condition. The start values for symmetric functions are a bit more complicated
[45], but of no interest here.

In the present study, non-symmetric double-well potentials forr > 0 are considered.
These can be easily symmetrized by a reflection atr = 0. Thus, symmetric four-well
potentials with doubly degenerate energy levels are in fact considered. The solutions of the
wave functions forr < 0, however, are not physically relevant.

The eigenvalues of the energyEi are those values for which the wave functions9i(r)
vanish in the limit limr→∞9i(r) = 0. This condition can be fulfilled numerically only
approximately by the condition that the wave functions vanish in a region which lies
sufficiently outside the turning points of the classical motion.

For a given potential, the wave functions and eigenvalues can be readily computed,
but for fitting purposes, e.g., the determination of model parameters from experimental
transition energies, the algorithm is not very well suited. Thus, in the present case, the
potential parameters have been determined using approximate WKB energies in a first step.
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The squares of the wave functions of the energy levels which are far below the barrier
top of a non-symmetric double-well potential exhibit finite values in either one of the wells.
For normalized wave functions the integral

qi =
∫ R/2

0
|9i(r)|2 dr (A2)

calculated for one half of the double-well potential is unity in such a case, while the
integral calculated for the other half of the potential is zero. For energy levels, which are
sufficiently near the barrier top,qi is no longer unity, and the integral for the opposite
well also assumes finite values. In such cases,qi can be interpreted as the probability
for the proton to survive in the well, and a respective widthσi = −Ei ln qi can be
attributed to the energy level. For an optical transition one has consequently the linewidth
σij = σ0 + σi + σj , with some intrinsic widthσ0 [46], and the widths of the initialσi and
the final stateσj . Using a Gaussian profile, a transition line can be represented by

I (E) = Iij

σij
√

2π
exp

[
− (Eij − E)

2

2σ 2
ij

]
. (A3)

With the help of the wave functions, the transition intensitiesIij can be calculated [47]:

Iij = CNEij
∣∣Pij ∣∣2 . (A4)

HereC is a proportionality constant,N stands for the number of oscillators per volume,
Eij is the transition energy andPij represents the transition matrix element:

Pij =
∫ ∞

0
9i(r)µ(r)9j (r) dr (A5)

with the dipole-moment functionµ(r).

Table A1. Intensity ratios of the optical transitions in PE and DE LiNbO3 [15] (superscript a).
The calculated values of reference [15] are based on the wave functions of a single-oscillator
model and the assumption of a fourth-order polynomial for the dipole-moment function. For the
values of the present work (superscript b), the wave functions, which are illustrated in figure 4,
have been used together with a second-order polynomial for the dipole-moment function (see
the text).

Experimentala Calculateda Calculatedb

I01/I02(OH) 165 166 165
I02/I03(OH) 16 16 12
I03/I04(OH) 8 8 78
I01/I02(OD) 175 228 176
I02/I03(OD) 22 21 28
I03/I04(OD) 15 11 18

By means of equations (A4) and (A5) transition intensities can be calculated when the
dipole-moment function is known. Different forms of the dipole-moment function have
been tested, taking again the LiNbO3 system as an example case. Reasonable agreement
between the observed and calculated intensities could be obtained (table 4) using a second-
order polynomialµ(r) = µ1r + µ2r

2, with µ2/µ1 = −20 nm−1, except again for the
highest proton overtone.

The proposed potential equation (4) is extremely flexible, which may also be suitable for
other applications. In the extreme casea � b, the function approximates a step function,
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with u(r) ≈ −u0, for r < r0, andu(r) ≈ 0, for r > r0 (the approximation means here that
the function remains analytical). In the other extreme casea � b, the function is almost
constantu(r) ≈ −u0, for r > r0, and adopts very large values forr < r0, thus approximating
a ‘hard-sphere’ potential. Between these limiting cases, the function adopts more common
forms, being identical to the Morse function forb = 2a. In a double-minimum potential,
these properties of equation (4) mean that the form of such a double-minimum potential
can continuously be varied from an almost rectangular barrier (a � b, u(r) ≈ 0, for
r0 < r < R − r0, andu(r) ≈ −u0, elsewhere) through ‘usual’ types of double-minimum
potentials (e.g.,b = 2a, the double Morse potential), to, finally, an almost rectangular well
in the other limiting case (a � b, u(r) ≈ −2u0, r0 < r < R − r0, and u(r) → ∞,
elsewhere).
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[18] Hydrogen bonds have been classified in reference [11], according to the bond length:R > 270 pm (‘weak’),

260 pm< R < 270 pm (‘intermediate’),R < 260 pm (‘strong’). This nomenclature is occasionally
adopted here, because it finds physical support in the present model.

[19] Negative mode-Gr̈uneisen parameters are not only typical of O–H· · ·O hydrogen bonds, but can also be
found in other substances, e.g., the hydrogen halides (see references [20, 21]). For the interpretation,
double-well potentials are also used in these cases [22].

[20] Johannsen P G, Helle W and Holzapfel W B 1984 J. Physique Coll.C8 199
[21] Johannsen P G, Helle W and Holzapfel W B 1990 High Pressure Science and Technologyed W B Holzapfel

and P G Johannsen (London: Gordon & Breach) p 227
[22] Jansen R W, Bertoncini R, Pinnick D A, Katz A I, Hanson R C, Sankey O F and O’Keeffe M 1987Phys.

Rev.B 35 9830
[23] Lee C, Vanderbilt D, Laason K, Car R and Parrinello M 1993Phys. Rev.B 47 4863
[24] Aoki K, Yamawaki H and Sakashita M 1996Phys. Rev. Lett.76 784
[25] Hirsch K R and Holzapfel W B 1986 J. Chem. Phys.84 2771
[26] Aoki K, Yamawaki H, Sakashita M and Fujihisa H 1996Phys. Rev.B 54 15 673
[27] Horsewill T, Johnson M and Trommsdorff H P 1997Europhys. News28 140 and references therein



2260 P G Johannsen

[28] Benderskii V A, Makarov D E and Wight C A 1994Chemical Dynamics at Low Temperatures (Advances in
Chemical Physics 88)ed I Prigogine and S A Rice (New York: John Wiley)

[29] Smith D F and Overend J 1972Spectrochim. ActaA 28 471
[30] For asymmetric bonds, in which the proton is more closely connected to one of its neighbours, the use of

these reduced masses is justified, but for the symmetric case, reduced masses, which take into account
both neighbours, or even the bare proton and deuteron masses, may be more appropriate. However, this
makes only a minor contribution and for the sake of uniformity the reduced masses, given in the text,
have been used in all of the calculations.

[31] Klug D D, Mishima O and Whalley E 1987J. Chem. Phys.86 5323
[32] Phillips W A 1981Amorphous Solids, Low-Temperature Propertiesed W A Phillips (Berlin: Springer) p 1
[33] Pruzan Ph 1994J. Mol. Struct.322 279
[34] Hemley R J, Jephcoat A P, Mao H K, Zha C S, Finger L W and Cox D E 1987Nature330 737
[35] Klug D D and Whalley J 1984J. Chem. Phys.81 1220
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